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1) Representation of F_.



Types in Fsub

Inductive typ :=

e /1

| arrow

@ T1 T2

| all :
pointer towards
a binding in the

environment

or

| var



Example of a closed type

Polymorphic identity:

V X <: Top. (X -> X)

variables point back
to a binder node

higher in the tree
()

/1




A bigger closed type

V X <: Top.
this is just to show (V) V Y <: (VZ: (X->Top) .2) .
that pointers can V U <: (X->Top) .
go arbitrary far A VIV <Y (YY)
back up in the tree
)
(V)
()




Environments and free variables

X<: U, ¥YLK:V, Z<: W |- V P <: Z2. (P -> X)
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2) Formal definitions



a) Types and environments



Definition of types

Inductive typ :=

| top 1 typ

| arrow : typ -> typ -> typ @

T1 T2

| all : typ > typ —-> typ A !

| var : nat -> typ —-> typ

d

\

De Bruijn index

of the variable

type to which the variable is mapped to,
irrelevant if the variable is not free




Example using labels

Polymorphic identity:

X<: Top |- X ->X

/TN /TN

N is the notation

to be written with labels as:k///////////forlabeISS

X <: Top |- X~*Top -> X*Top



Definition of environments

Parameter env : Set

. environment

Parameter env_empty : env as lists

Parameter env _push : env -> typ -> env

we don't need to give an implementation for
type env, since labels on free variables carry
all the information that we may need to use

Parameter env_has : env -> nat -> typ -> Prop

"env_has E X T" is a proposition which says
that X is mapped to T in the environment E




b) Operations on types



Definition of insert
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insert a binding at position X in the implicit environment

Fixpoint insert (X

match T with

top =>
arrow T1 T2 =>
all Tl T2 =>

var Y T1 =>

: nat) (T : typ) : typ :=

Cross a binder

top

arrow (insert X T1) (insert/x T2)
all (insert X T1l) (insert (S X) T2)
var (if le gt dec X Y then S Y else Y)

(insert X T1) \

shift the index
iIn case X =Y




Definition of weaken
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weaken introduces variables at end of the environment

Fixpoint weaken (X : nat) (T : typ) : typ :=
match X with
| O => insert O T

| S P => insert 0 (weaken P T)

note that "weaken X" introduces X+1 variables;
this helps simplify some statements and proofs




Definition of update

"update X U T" puts a label U on all occurences of X in T

Fixpoint update (X : nat) (U : typ) (T : typ) : typ :=

match T with cross a binder
| top => top

| arrow Tl T2 => arrow (update X U T1) (updateZX U T2)
| all Tl T2 => all (update X U T1l) (update (S X) U T2)
| var Y Tl => var Y (if eq nat dec X Y

then weaken Y U

else update X U T1)

N\

update the label
in case X=Y




Definition of push

X < |"push T1 T2" labels all
E occurences of Xin T2 by T1

"push” is used to pass a binding when exploring a type

Definition push := update 0.

because X has De Bruijn
index O relatively to T2




c) Well-formation



Well-formation of types

"wf E T" means "type T is well-formed in environment E"

Inductive wf : env -> typ -> Prop :=
| wf E top

| wf E Tl -> wf E T2 -> wf E (arrow T1 T2)
| wE E Tl -> (V U : typ, wf (env push E U) (push U T2))

-> wf E (all T1 T2)

| env_has E X Tl -> wf E Tl ->\wf E (var X TI1)

/

if T1 is the label of the we need to be able to map the
free variable X, then X variable bound in T2 not only to
must be mapped to type T1 but also to some other types
T1 in the environment E (as needed by the rule SA-AIl)




Well-formation of environments

"wf_env E" holds if and only if E has been constructed
by a succession of push of well-formed types

Inductive wf env : env -> Prop :=

| wf env env empty

| wf env E -> wf E U -> wf env (env push E U)



2) Proving results



a) Properties of the operations



Crossing push with insert and update

insert_on;push :

insert (S X) (push T1 T2)
= push (insert X T1l) (insert (S X) T2)

@ LHS: we push T1 into T2 and get a type U,
and then we insert at level X above U

RHS: we insert at level X above T1 and get
A T1', then insert at level X+1 above T2 and

get T2', then we push T1' into T2'.

An equivalent

update on push :
—onFP | result for update

update (S X) P (push T1 T2)
= push (update X P T1l) (update (S X) P T2)



Crossing update at weaken

update at weaken :

update X U (weaken X T)
= weaken X T

this lemma says that after we inserted X+1 variables at
the end of the environment, then the function which will
update all occurences of variable with index X will change
nothing: indeed, this variable does not appear in type T
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we use this lemma to capture the fact that if we have
an environment of the form "T1, X <: T, 2" then X has
no occurence in T (we need that to prove narrowing)




Proof graph for the crossing lemmas

insert_above_insert

/‘\

insert_below_weaken insert_above_weaken
udpate_at_insert update_above_insert insert_above_update
update_below_weaken update_above_weaken

—

update_above_update

|

update_at_weaken update_on_push insert_on_push




Example of a crossing lemma

Lemma insert_above_insert :

insert (S(X+Y)) (insert X T)
= insert X (insert (X+Y) T).
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Relation between update and equality

update and equality :

update X Q T1
-> update X P T1

update X Q T2
update X P T2

T = T Ty = T,
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the intuition behind this lemma is that in narrowing we
change from 'T1, X <: Q, 2" to "1, X <: P, I'2" and so
need to udpate the label of each occurence of X in 2.




b) Properties of unsafe subtyping



Statements of properties about unsafe subtyping

insert_preserves_sub

Tl <x T2 -=> (insert X Tl) <x (insert X T2)

weaken_preserves_sub

Tl < T2 => (weaken X T1l) <x (weaken X T2)

sub reflexivity :

T < T

narrowing preserves sub
(update X Q S) <x (update X Q T) -> P <xQ ->
(update X P S) <x (update X P T)
sub_transitivity :

S < Q -> Q<a T -> S <u T



Proof graph for results about unsafe subtyping

insert_on_push < insert_preserves_sub
sub_reflexivity weaken_preserves_sub

narrow_preserves_sub sub_transitivity

____________________________



3) Structure of the solution



Structure of the solution (not including tactics)

Definition of types and the 4 operations

9 lemmas about Definition of size and Definition of
crossing operations operations preserve size unsafe subtyping
v

4 lemmas describing
properties operations

Definition of environments Properties of
and well-formation unsafe subtyping
v

Definition of subtyping

v

Equivalence of subtyping

and unsafe subtyping \

Properties of subtyping




