# Solution using De Bruijn indices and implicit environments 

Arthur Charguéraud

## 1) Representation of $\mathrm{F}_{<\text {: }}$

## Types in Fsub

## Inductive typ :=



## Example of a closed type

Polymorphic identity:

$$
\forall \mathrm{x}<: \text { Top. ( } \mathrm{X}->\mathrm{x})
$$




Environments and free variables

$$
\mathrm{X}<: \mathrm{U}, \mathrm{Y}<: \mathrm{V}, \mathrm{Z}<: \mathrm{W} \quad \mathrm{I}-\forall \mathrm{P}<: \mathrm{Z} . \quad(\mathrm{P}->\mathrm{X})
$$


2) Formal definitions

## a) Types and environments

## Definition of types

Inductive typ :=


## Example using labels

Polymorphic identity:

$$
x<: \text { Top } \quad 1-\quad x->x
$$


to be written with labels as:
$\wedge$ is the notation for labels

```
X <: Top |- X^Top -> X^Top
```


## Definition of environments

```
Parameter env : Set 
```

we don't need to give an implementation for
type env, since labels on free variables carry
all the information that we may need to use
Parameter env_has : env -> nat -> typ -> Prop
"env_has E X T" is a proposition which says
that $X$ is mapped to $T$ in the environment $E$

## b) Operations on types

## Definition of insert


insert a binding at position $X$ in the implicit environment

```
Fixpoint insert (X : nat) (T : typ) : typ :=
    match T with
    | top => top
    cross a binder
    | arrow T1 T2 => arrow (insert X T1) (insert X T2)
    | all T1 T2 => all (insert X T1) (insert (S X) T2)
    | var Y T1 => var (if le_gt_dec X Y then S Y else Y)
    (insert X T1)
```

shift the index in case $X \leq Y$

## Definition of weaken


weaken introduces variables at end of the environment

```
Fixpoint weaken (X : nat) (T : typ) : typ :=
match X with
    | O => insert 0 T
    | S P => insert 0 (weaken P T)
```

note that "weaken $X$ " introduces $X+1$ variables;
this helps simplify some statements and proofs

## Definition of update

## "update $\mathrm{X} U \mathrm{~T}$ " puts a label U on all occurences of X in T

```
Fixpoint update (X : nat) (U : typ) (T : typ) : typ :=
    match T with
    | top => top
    | arrow T1 T2 => arrow (update X U T1) (update\X U T2)
    | all T1 T2 => all (update X U T1) (update (S X) U T2)
    | var Y T1 => var Y (if eq_nat_dec X Y
        then weaken Y U
        else update X U T1)
        update the label
        in case X=Y
```


## Definition of push


"push" is used to pass a binding when exploring a type

```
Definition push := update 0.
because \(X\) has De Bruijn index 0 relatively to T2
```

c) Well-formation

## Well-formation of types

"wf E T" means "type T is well-formed in environment E"

Inductive wf : env -> typ -> Prop :=
| wf E top
| wf E T1 -> wf E T2 -> wf E (arrow T1 T2)
| wf E T1 -> ( $\forall \mathrm{U}$ : typ, wf (env_push E U) (push U T2)) -> wf E (all T1 T2)
| env_has E X T1 -> wf E T1 -> wf E (var X T1)
if T1 is the label of the free variable $X$, then $X$ must be mapped to type T1 in the environment $E$
we need to be able to map the variable bound in T2 not only to T1 but also to some other types (as needed by the rule SA-All)

## Well-formation of environments

## "wf_env E" holds if and only if E has been constructed by a succession of push of well-formed types

```
Inductive wf_env : env -> Prop :=
| wf_env env_empty
| wf_env E -> wf E U -> wf_env (env_push E U)
```

2) Proving results
a) Properties of the operations

## Crossing push with insert and update

```
insert_on_push :
    insert (S X) (push T1 T2)
    = push (insert X T1) (insert (S X) T2)
```



LHS: we push T1 into T2 and get a type U, and then we insert at level X above U

RHS: we insert at level $X$ above T1 and get T1', then insert at level $\mathrm{X}+1$ above T 2 and get T2', then we push T1' into T2'.
update_on_push :

```
update (S X) P (push T1 T2)
\(=\) push (update X P T1) (update (S X) P T2)
    update (S X) P (push T1 T2)
    pus
``` result for update

\section*{Crossing update at weaken}
```

update_at_weaken :
update X U (weaken X T)
= weaken X T

```
this lemma says that after we inserted \(X+1\) variables at the end of the environment, then the function which will update all occurences of variable with index \(X\) will change nothing: indeed, this variable does not appear in type T

we use this lemma to capture the fact that if we have an environment of the form " \(Г 1, \mathrm{X}<: \mathrm{T}, ~ Г 2\) " then X has no occurence in \(T\) (we need that to prove narrowing)

\section*{Proof graph for the crossing lemmas}


\section*{Example of a crossing lemma}

Lemma insert_above_insert :
```

    insert (S(X+Y)) (insert X T)
    = insert X (insert (X+Y) T).

```


\section*{Relation between update and equality}
```

update_and_equality :
update X Q T1 = update X Q T2
-> update X P T1 = update X P T2

```

the intuition behind this lemma is that in narrowing we
 need to udpate the label of each occurence of \(X\) in \(\Gamma 2\).
b) Properties of unsafe subtyping

\section*{Statements of properties about unsafe subtyping}
```

insert_preserves_sub :
T1 <\alpha T2 -> (insert X T1) <\alpha (insert X T2)
weaken_preserves_sub :
T1 <a T2 -> (weaken X T1) <a (weaken X T2)
sub_reflexivity :
T<m T
narrowing_preserves_sub :
(update X Q S) <a (update X Q T) -> P <a Q ->
(update X P S) <q (update X P T)
sub_transitivity :
S <a Q -> Q <\alpha T -> S <\alpha T

```

\section*{Proof graph for results about unsafe subtyping}


\section*{3) Structure of the solution}

\section*{Structure of the solution (not including tactics)}

\section*{Definition of types and the 4 operations}
```

