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Abstract. Particle-in-Cell (PIC) codes are widely used for plasma sim-
ulations. On recent multi-core hardware, performance of these codes is
often limited by memory bandwidth. We describe a multi-core PIC algo-
rithm that achieves close-to-minimal number of memory transfers with
the main memory, while at the same time exploiting SIMD instructions
for numerical computations and exhibiting a high degree of OpenMP-
level parallelism. Our algorithm keeps particles sorted by cell at every
time step, and represents particles from a same cell using a linked list
of fixed-capacity arrays, called chunks. Chunks support either sequential
or atomic insertions, the latter being used to handle fast-moving parti-
cles. To validate our code, called Pic-Vert, we consider a 3d electrostatic
Landau-damping simulation as well as a 2d3v transverse instability of
magnetized electron holes. Performance results on a 24-core Intel Sky-
lake hardware confirm the effectiveness of our algorithm, in particular
its high throughput and its ability to cope with fast moving particles.

Keywords: Particle-in-cell · Plasma physics · Multi-core · SIMD archi-
tecture · Shared memory · Chunks · Strict binning · Magnetized electron
holes

1 Introduction

The Particle-in-Cell (PIC) method enables large-scale simulations of plasma
physics. PIC simulations are, for example, key to the design of ITER fusion
reactor, and they also apply to other domains, e.g., astrophysics. As of 2018,
PIC simulations accommodate at the order of 1013 particles, involving the hun-
dreds of thousands of cores available on the world’s top super-computers.

To reach such a scale, state-of-the-art PIC codes exploit parallelism avail-
able at three levels: inter-node parallelism using, e.g., MPI; shared-memory
multi-threading using, e.g., OpenMP, and register-level parallelism using SIMD
instructions. A number of implementations also leverage GPUs or MICs. Im-
plementations include EMSES [17], GTC-P [20], ORB5 [12], OSIRIS [8], PI-
CADOR [19], PIConGPU [5], PSC [10], VPIC [4].
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A recent paper [20] studied GTC-P performances in details, and points out
that: “metrics such as flop/s or percentage-of-peak are less relevant for the pre-
dominantly memory-bound gyrokinetic PIC methods.” The authors then present
a model able to predict execution time as a function of data transfers. Most pre-
dominant is the intra-node operations on the shared memory (60% to 80% of the
execution time). Their cost is decomposed between in-cache accesses, contigu-
ous accesses, and random accesses—the latter being the most costly. This study
shows that, to improve the performance of multi-core (intra-node) processing in
PIC simulations, we must decrease the amount of costly memory accesses. Of
course, we must do so by preserving the OpenMP-level parallelism as well as the
crucial use of SIMD instructions.

The strict-binning approach to implementing the PIC method enables signif-
icant reduction in the number of random accesses and cache misses [21, 7, 17, 1]:
at every time step, particles that fall in the same cell are stored together. Doing
so brings two main benefits. First, the electric field values can be read only once
per cell, avoiding numerous cache misses and allowing SIMD computations when
updating particle velocities. Second, the representation saves the need to store
a cell index for each particle, thereby saving memory loads and stores.

A central challenge with the strict-binning approach is the representation of
the dynamically-sized bins storing the particles. A state-of-the-art proposal by
Nakashima et al. [17] organizes particles in a big array, ordering them according
to their cell index, and leaving variable-size gaps between the groups of particles
associated with each cell. Yet, this approach suffers from two important limita-
tions. First, as particles move, maintaining the variable-size gaps requires costly
operations for shifting particles. Second, the algorithm, which uses a coloring
scheme [13] to avoid data races when processing the cells in parallel, does not
handle well fast-moving particles (particles moving more than a couple cells away
at a given time step): it resorts to sequential processing for these particles.

These two limitations are exacerbated when the percentage of crossing parti-
cles (particles changing cells at each time step) increases, to the point of possibly
becoming a major bottleneck. For example, in a parallel execution using 64 cores,
having as little as 0.5% of fast-moving particles can result in a 32% slowdown
on the total execution time due to the sequential processing of these particles.1

We propose an algorithm implementing strict-binning for the PIC method
that addresses the aforementioned limitations, while still supporting efficient
OpenMP/SIMD parallelization of all critical loops. Our algorithm leverages the
use of chunk bags, i.e. linked lists of fixed-capacity arrays, to achieve SIMD-
friendly storage of particles with limited memory overheads. These chunk bags
are furthermore devised to support atomic push operations, which are used to
handle fast-moving particles within the main parallel loop. Our algorithm mini-
mizes the amount of memory transfers: at each time step, each particle gets read
from and written to memory exactly once. In particular, no further move or
reordering is ever required, regardless of the percentage of fast-moving particles.

1 Let t denote the single-core execution time. Assume 0.5% of sequential execution, and
99.5% using 64 cores. The parallel execution time is: 0.005t+ 0.995t/64 = 1.32t/64.



Parameters

N: number of particles.

nbCells = X · Y · Z: size of the grid.

∆t: duration of a time step.

Variables

particles[0..N− 1]: set of particles,
with position xp and velocity vp.

ρ[0..X][0..Y ][0..Z]: charge density.

E[0..X][0..Y ][0..Z]: electric field.

Algorithm

Foreach time step

Set all cells of ρ to 0

Foreach particle

Interpolate E to xp Stored in Ep

Update velocity vp +=
q
m
Ep∆t

Update position xp +=vp∆t

Accumulate charge from xp on ρ

Compute E from ρ Poisson solver

Fig. 1. High-level description of the Particle-in-Cell (PIC) method.

This algorithm is efficient provided that the average number of particles
per cell exceeds a couple hundreds. Although laser-driven particle acceleration
simulations can use as few as 30 particles per cell [5], large-scale, high-precision
simulations may involve hundreds to thousands of particles per cell [21, 4, 10].

Through the rest of this paper, we describe our algorithm, comment on its
theoretical properties (space usage, parallelization of critical loops, amount of
memory transfers), discuss performance results (bandwidth usage, impact of
fast-moving particles), numerical results (simulation of Landau-damping and of
transverse instability of magnetized electron holes), and related work.

2 An Efficient, Strict-Binning, Multicore PIC Algorithm

Fig. 1 describes the PIC method, applied to the resolution of the Vlasov-Poisson
system, which models the time evolution of the distribution function of charged
particles in a plasma. Following the Cloud-in-Cell model [3, Sect. 2.6.], we inter-
polate the electric field and accumulate the charges linearly from/to the eight
corners of the grid cell where each particle lies. The Poisson solver takes less
than 5% of the execution time, we thus focus our attention on the particle loop.

Our implementation performs all computations in double precision, with the
exception of positions, which are stored using the “index plus offset” represen-
tation [4, III.E.], whereby the position of a particle is described relative to the
corner of the cell containing the particle, using 3 float values, yielding suffi-
cient precision. In the strict binning approach, the index of the containing cell
is implicit. Thus, each particle admits a 36-byte representation.

Particles are stored in fixed-capacity arrays (chunks, e.g., [1]). Several chunks
might be needed to store all the particles contained in a same cell. Each cell is
thus described by a linked list of chunks (a chunk bag). The number of particles
in a chunk, denoted by K thereafter, should enable efficient vectorization (K is
a multiple of 16 for 512-bit registers), and at the same time be large enough to
tame the cost of following a pointer from a chunk to the next (e.g., 128 or 256).

Benchmarking on the hardware considered reveals that the structure of ar-
rays (SoA) layout, which enables better vectorization, improves performance
compared with the array of structures (AoS) layout. The memory layout we use
for the particles is summarized on the next page. (Arrays should be aligned.)



struct chunk { struct chunk* next; int size; // 0 <= size <= K

float dx[K], dy[K], dz[K];

double vx[K], vy[K], vz[K]; } chunk;

struct { chunk* front, back; } bag; // linked list of chunks

The chunk bag data structure supports O(1) insertion of a particle (adding
a fresh chunk if needed), O(1) merge of two bags thanks to the back field (note
that chunk compaction is not needed), and O(n) iteration over the contents, all
with excellent constant factors. Furthermore, unlike chunks introduced by prior
work [1], our chunk bags are devised to support a thread-safe atomic insertion
operation. Atomic insertions are central to the handling of fast-moving particles.
Atomic insertion uses a fetch-and-add instruction to reserve a slot in the chunk
for the particle. If a thread attempts to reserve the one-past-the-end slot, it
acquires responsibility to extend the bag with a fresh chunk, in which case it
sets the next pointer of the fresh chunk to the current front pointer of the bag,
and sets the front pointer of the bag to the address of the fresh chunk.

When processing a chunk of particles, the algorithm first updates velocities
and positions, then migrates the particles to different chunks, depending on the
cell associated with their new position. Once all particles from the chunk are
processed, the chunk is stored into a (per-core) free list, so as to be subsequently
reused to extend a bag whose last chunk becomes full. Our algorithm preserves
the following invariant: at the beginning of a time step, all the particles are
stored in at most dN/Ke+ 2 · nbCells chunks, where N denotes the total number
of particles, and K denotes the number of particles per chunk.

To dispatch particles according to their target cells, we associate two bags
with each cell: a private bag, accessed at most by one thread at a time; and a
shared bag, accessed concurrently, to handle fast-moving particles. To initialize
these two bags, we need an additional 2 ·nbCells empty chunks. In total, we need
dN/Ke + 4 · nbCells chunks. We have proved that this number of chunk suffices
at any point of a simulation, regardless of how particles move. Thus, the space
used by our algorithm, in addition to the minimal amount of memory needed to
represent the particles, grows in proportion with 4K · nbCells · sizeof(particle).2

In order to maximize the number of insertions into private bags while pre-
serving a high degree of OpenMP parallelism, we follow the coloring scheme
proposed by Kong et al. [13], and generalized from 2d to 3d by Nakashima et
al. [17]. The idea is to fill the space with tiles, of size 2x2x2 (or more), in a
regular manner. Tiles are colored using 8 different colors in such a way that two
adjacent tiles have distinct colors. At each of the 8 color phases, 1

8 of the tiles are
processed, in parallel by nbCores threads.3 Because cells processed in parallel by
distinct threads are at least 2 cells away from each other, all the particles that

2 In practice, we allocate a dozen extra chunks per core, giving some slack and avoiding
dynamic load balancing of free chunks. Note that it is very unlikely for these chunks
to ever be needed, because cores free chunks at a faster rate than they fill chunks.

3 For a 2x2x2 tiling, at the i-th coloring phase, the algorithm processes cells whose
coordinates satisfy: ((x/2)mod 2) + 2 · ((y/2)mod 2) + 4 · ((z/2)mod 2) = i. Using
larger tiles is possible but greatly reduces the number of tiles processed in parallel.



1 bag particles[0..nbCells−1]; // Particles by cell, at current time step
2 bag particlesNextPrivate[0..nbCells−1], particlesNextShared[0..nbCells−1];
3 double ρ[0..X][0..Y][0..Z], E[0..X][0..Y][0..Z];
4 double ρNext[0..nbCores−1][0..nbCells−1][0..7]; // 8 corners per cell
5 Foreach time step
6 Foreach color in [0..7] // 8 coloring phases
7 Parallel Foreach tile of that color // OpenMP parallel
8 Foreach cell idCell in that tile
9 Read E[x][y][z], foreach (x, y, z) among the 8 corners of cell idCell

10 Foreach chunk in particles[idCell]
11 Foreach particle in that chunk // SIMD vectorized
12 Update particle velocity
13 Foreach particle in that chunk // SIMD vectorized
14 Update particle position
15 Compute idCellNext, the index of the cell containing the particle
16 Foreach particle in that chunk
17 If the particle moves inside its tile
18 Or it moves to the closer half of a neighbor tile
19 Add the particle into particlesNextPrivate[idCellNext]
20 Else
21 Atomically add the particle into particlesNextShared[idCellNext]
22 Add its charge into ρNext[thisCoreId][idCellNext][..] // SIMD
23 Put a pointer to that chunk into the freelist of the current core
24 Parallel Foreach idCell in [0..nbCells−1] // OpenMP parallel
25 Set particles[idCell] to particlesNextPrivate[idCell]
26 Merge particlesNextShared[idCell] into particles[idCell]
27 Set particlesNextPrivate[idCell] to empty, using an empty chunk
28 Set particlesNextShared[idCell] to empty, using an empty chunk
29 Parallel Foreach (x, y, z) in [0..X]x[0..Y]x[0..Z] // OpenMP parallel, collapsed
30 Foreach of the 8 pairs (idCell,i) such that (x,y,z) is i−th corner of idCell
31 Foreach idCore in [0..nbCores−1]
32 ρ[x][y][z] += ρNext[idCore][idCell][i]
33 ρNext[idCore][idCell][i] = 0
34 Compute E from ρ using a Poisson solver and set ρ to 0 // FFTW + OpenMP

Fig. 2. Our parallel algorithm for the PIC method on multicore architectures.

move, at a given time step, no more than one cell away (no more than half a tile
away, in general) can be pushed into private bags, in a thread-safe manner.

The pseudo-code of our algorithm appears in Fig. 2. Particles from a same
cell are processed sequentially by a same thread. To benefit from SIMD per-
formance, we split the loop over each chunk. (If one chunk does not fit into L1
cache, additional splitting is needed.) First, our code updates velocities (line 12).
Second, it computes the new positions (line 14), introducing an auxiliary array
for storing the new cell indices. Third, it sequentially pushes each particle into
the chunk associated with its target cell. If the target cell lies in the current tile,
or lies in the closer half of an immediate neighboring tile, a non-atomic inser-
tion is performed on a private bag (line 19). Otherwise, an atomic insertion is



performed on a shared bag (line 21). Note that the boolean condition involved
can be evaluated using a simple arithmetic test.

Once all the particles are processed, the algorithm merges, for each cell, its
private bag with its shared bag (line 26). No chunk compaction is performed at
this point; as a result, the bag associated with one cell may contain up to 2 non-
full chunks. Thus, there are at most dN/Ke+ 2 · nbCells nonempty chunks at the
beginning of the next time step. It follows that at least 2 · nbCells empty chunks
must have been freed during the current time step. This number corresponds
exactly to the number of chunks needed to initialize the private and the shared
bags for the next time step. Our algorithm performs this initialization efficiently
in parallel (using a prefix sum array, based on the sizes of the per-core free lists).

We next describe the treatment of the charge density and the electric field
(ρ and E). When processing particles from one cell, the algorithm first reads from
memory the values of the electric field on the 8 corners of that cell (line 9). Im-
portantly, thanks to the strict-binning approach, this data needs only be loaded
once from memory. As particles are processed and moved to their target cells,
the charge of each particle is accumulated (line 22) into the array ρNext, which,
at the end of the time step, is used to update E for the next iteration. We exploit
a recently-proposed, ingenious technique allowing to accumulate the charge on
the 8 corners using SIMD instructions [22]. Concretely, the array ρNext involves
some amount of redundancy: for each cell, 8 values are stored adjacently in mem-
ory, describing the charge on the 8 corners of that cell. At the end of a time step,
the charge at a grid point is computed by summing the values associated with
the 8 cells that have this grid point as one of their corners (line 32).

We considered two different possibilities for updating ρNext. The first pos-
sibility is to decompose ρNext into a private array and a shared array, just like
we do for bags of particles. In this approach, only the deposit of the charge of
fast-moving particles triggers atomic operations; for all others particles, we can
use SIMD operations. The second possibility is to decompose ρNext into nbCores
arrays. In this approach, each core has exclusive access to its charge array, so all
accesses use SIMD operations. The downside is a slight increase in the memory
footprint, and in the time needed to sum up the values. However, under our
assumption of a reasonably large number of particles per cell, these additional
costs are tiny in front of the gains. Thus, we opted for the latter approach.

Under the assumption of (at least) hundreds of particles per cell in average,
the operations for manipulating chunks (following pointers, pushing/popping
in free lists) and for manipulating per-cell information are all well amortized.
Overall, our algorithm is not far from optimal in terms of memory transfers.

Optimization when particles move at most one cell per time step.
For simulations whose physical parameters ensure that movement is restricted
to immediate neighboring cells (e.g., [4, 10]), we can optimize our algorithm
by removing the shared bags altogether. In this case, we require only dN/Ke +
2 · nbCells + nbCores chunks, and do not need any atomic insertion operation.
Likewise, ρNext can be stored in a single array (indexed by cells and by corners).



3 Performance Results

To assess correctness and performance of our code, which is called Pic-Vert, we
considered two classical test cases: a 3d Landau-damping simulation and a 2d3v
electron hole simulation. Section 4 presents details on these experiments, and
argues that the numerical results produced by our simulation match the expected
results. In the remaining of this section, we discuss performance results.

Experimental hardware is an Intel Xeon Platinum 8160 @ 2.1 GHz (Skylake),
with 96 GB of RAM, 6 memory channels, and 24 cores. Our C code was compiled
using Intel C Compiler 17.0.4, and the FFTW3 library [9] for the Poisson solver.

The algorithm depends on two parameters. First, we use tiles of size 2x2x2

for the coloring. Tiles of size 4x4x4 lead to similarly good performances. Using
larger tiles degrades performance. Second, we use K = 256 for the chunk capacity.
Larger values of K increase the space usage and do not reduce the execution time.
Smaller values of K increase the execution time overheads: +12% for K = 128,
and +52% for K = 64. Note that, for K = 256, the memory “slack”, which is equal
to 4 · nbCells · sizeof(chunk), represents in the Landau-damping simulation only
13% of the amount of memory strictly required for representing the particles.

Achieved throughput. For the end-user of a simulation, the metric that mat-
ters is the number of particles processed per second. The Pic-Vert code achieves:

– 740 million particles per second (30.8m/s/core) in the 3d Landau-damping
simulation, where 31% of the particles change cell at each iteration;

– 910 million particles per second (37.9m/s/core) in the 2d3v electron hole
simulation, where 32% of the particles change cell at each iteration.

Analysis in the roofline performance model. As argued in Sect. 2, our
algorithm performs not far from the minimal number of memory operations—
a key feature for PIC simulations hit by the memory bandwidth bottleneck.
With this property in mind, it is interesting to compare the memory bandwidth
achieved by our algorithm against the capacity of the hardware. Consider the
Landau-damping simulation. The memory bandwidth achieved is 53.6 GB/s.4

The theoretical peak advertised by the manufacturer is 127.99 GB/s. The Stream
benchmark [15], which aims at evaluating the practical peak using a few mi-
crobenchmark programs, and which is commonly used as a baseline, provides
the measure 98.2 GB/s. Our algorithm thus achieves 42% of the theoretical
peak and 55% of the practical peak bandwidth. Reaching higher percentage in
a PIC simulation appears to be very challenging.

Our algorithm is memory bound. In general, an algorithm may be compute
bound (i.e. limited by the number of floating-point operations per second) or

4 The bandwidth is obtained by multiplying the size of a particle (36 bytes, plus
64
K

bytes to account for chunk headers) by the number of particle processed per
second (740 million), and by a factor 2 (one read plus one write). It would be very
interesting to compare with other algorithms. Unfortunately, such numbers are rarely
advertised, and comparisons are often hazardous due to differences in hardware, in
particle representation (e.g., float vs double), in numerical schemes, etc.
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Fig. 3. Analysis of performances in the roofline model.

memory bound (i.e. limited by the number of bytes per second transfered from
main memory) depending on its operational intensity, defined as the number of
operations performed divided by the number of bytes moved from or to the main
memory. We computed the operational intensity of the 3d code by counting the
number of floating point operations per particle (79 operations in single-precision
and 65 in double-precision, which leads to 209 operations when normalized to
single-precision), and counting the number of bytes used to represent a particle
(36 bytes, plus 0.25 byte to account for chunk headers). We thus derive that our
3d code has an operational intensity equal to 209/(2 · 36.25) ≈ 2.9. Similarly, we
computed the operation intensity for the 2d3v code to be 114/(2 · 32.25) ≈ 1.8.

Fig. 3 represents the bounds on computation and memory bandwidth, in a
chart showing the operational intensity on the x-axis, and the computation per-
formance on the y-axis [23]. Note that both axes are log-scale. The computation
bound is an horizontal line, at 1,612 GFlops/s (billion floating-point operations
per second), a figure provided by the hardware manufacturer. The theoretical
and practical memory bounds (bytes/s) are diagonal lines, because the bound in
performance (flop/s) is equal to the operational intensity (flop/byte) multiplied
by the memory bandwidth (bytes/s). Each diagonal line meets the horizontal
line at the point of break-even between memory bound and compute bound.

Efficient processing of fast-moving particles. In addition to being memory
efficient, our algorithm also benefits from another key feature not found in prior
strict-binning algorithms: fast-moving particles are handled efficiently within the
main parallel loop. For a particle moving more than half a tile away, we require
only one extra atomic operation. Moreover, the contention associated with this
atomic operation is relatively limited. Indeed, for two atomic operations to be
issued on the same memory cell at the “same time” (i.e., close enough in time for
a race on the cache line to occur), it must be the case that two particles taken



Particles that move 1 cell away 8.0% 8.0% 8.0% 8.0% 8.0% 8.0% 8.0%
Particles that move 2 cells away 0 0.7% 1.9% 3.1% 4.3% 5.6% 4.4%
Particles that move 3 cells away 0 0 0 0 0 0.2% 1.4%
Particles pushed atomically (line 21) 0.0% 0.4% 1.0% 1.6% 2.2% 3.1% 3.7%
Slowdown w.r.t. first column 0 0.0% 0.9% 3.8% 4.4% 4.2% 7.0%

Table 1. Impact on performance of increasing the percentage of fast particles.

from two distinct tiles spaced away by at least one full tile are moving towards
the same cell of a third tile, at the “same time”. Thus, the performance of our
algorithm should be relatively independent form the heat.

To empirically evaluate the impact of fast-moving particles, we consider a
simulation in which we artificially varied the initial distribution of particle ve-
locities. To that end, we manually tuned these distributions in such a way as to
obtain several test cases with increasing number of fast-moving particles.5 Each
test case is reflected by a column from Table 1. More specifically, the three first
rows show the percentage of particles that move away from 1, 2 or 3 cells from
their current grid cell at each time step (no particle move further away).

By instrumenting the code, we measured the number of push operations that
trigger an atomic write (line 21 from Fig. 2). These numbers, relative to the total
number of particles, appear in the fourth line of the table: they vary from 0%
to 3.7%. The last row of Table 1 gives the corresponding slowdown on the total
execution time. Figures show that even when the percentage of particles whose
move require an atomic operation is as high as 3.7%, the cost of processing
these fast moving particles remains fairly limited: +7.0%. In comparison, any
alternative algorithm that sequentially processes 3.7% of the particles in a 24-
core execution would suffer at least from a +85% slowdown (recall Sect. 1).

Scaling. Although inter-node parallelism is orthogonal to the focus of the present
paper, we used particle decomposition to scale our algorithm on 128 Skylake
sockets (each with 24 cores, 12.3 TB of RAM in total), using one MPI process
per socket. We simulated Landau-damping with 256 billion particles, achieving
a throughput of 89.6 billion particles per second: 123x speedup w.r.t. one socket.

4 Numerical Results

3d3v Landau-damping. We consider a classical Landau-damping test case [3,
11], simulating 2 billion particles on a 64×64×64 grid, for 500 time steps. We use
the same parameters as in [18]: time step of 0.05, periodic boundary conditions
on spatial domain Ω = [0, 22]3 and initial distribution function:

f0(x, y, z,v) = 1
(2π)3/2

e−|v|
2/2L(x)L(y)L(z) with L(w) = 1 + 0.05 cos(πw/11).

Fig. 4 represents the evolution of electric energy. It shows that the decay slope
in our simulation is in accordance with the theoretical value γ = −0.008466
obtained from the dispersion analysis.

5 Particle velocities in the experiment of Table 1 follow the sum of two Gaussian
distributions, like in the bump-on-tail instability. Details may be found in [2].
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Fig. 5. Time evolution of ρ(t, x, y) in the electron hole simulation, at t = 20 and t = 40.

2d3v Electron hole. We consider a more complex test case proposed by
Muschietti et al. [16]. We simulate 64 billion particles on a 512×512 grid (on
32 Skylake sockets). Time step is 0.1 and spatial domain is [0, L]2, with L = 32.

The initial function is f(x, y, v) = F1(v21 − 2φ(x, y))e−50(v
2
2+v

2
3) with potential

φ(x, y) = e−0.5((x−L/2)/∆‖−0.3 cos(0.39y))
2

, with ∆‖ = 3 and F1 defined as:

F1(w) =


√
−w
π∆2

‖

(
1 + 2ln( ψ

−2w )
)

+ 6+(
√
2+
√
−w)(1−w)

√
−w

π(
√
2+
√
−w)(4−2w+w2)

, for − 2ψ ≤ w < 0,

6
√
2

π(8+w3) , for w > 0.

The external magnetic field is aligned with x and has amplitude B0 = 0.2.

Fig. 5 shows the charge density ρ(t, x, y) = 1 −
∫
f(t, x, y, v)dv, on the left

at time t = 20, and on the right at time t = 40. These results are qualitatively
similar to those from Muschietti et al. [16].

In addition, we studied the convergence of the simulation with respect to the
number of particles and to the grid size. To that end, we compare, for different
settings of these two parameters, the time evolution of a quantity representative



Fig. 6. Time evolution of the y part of electric field norm in the electron hole simulation,
for different values of the number of particles and of the grid size.

of the instability.6 Results appear in Fig. 6. They show that using a small 32×32
grid with 200 million particles as considered by Muschietti et al. exhibits the
correct qualitative behavior up to t = 50, but diverges beyond this point.

For a quick simulation, it appears preferable to use a 64×64 grid with only
20 million particles, as it gives quantitatively accurate results up to t = 50. For
longer simulations, our results show that using a 128×128 or a 256×256 grid with
200 million particles suffices to give accurate results up to t = 100. Indeed, the
two corresponding curves are close to that of our large-scale simulation, which
uses a 512×512 grid with 64 billion particles (the top-most curve at t = 100).

5 Technical Comparison to Related Work

We organize the discussion of related work by focusing on three main criteria:
strict or non-strict binning, representation of particles, and treatment of data
races arising when two threads push data onto a same target cell.

To ensure efficient accesses to the electric field and charge arrays, locality
is essential in PIC simulations. In numerous algorithms, particles are stored in
an array and ordered by their cell index. Yet, because particles move in the
grid, their locality in the array decreases at each time step. Thus, reordering
operations must be performed: either at every time step, to maximize locality
(e.g., [12]), or at some lower frequency, reducing locality but mitigating the cost
of re-sorting (e.g., [4, 10]). Depending on the option, performances suffer either
from numerous costly random accesses or from suboptimal locality.

Rather than sorting, other algorithms rely on coarse-grained binning [5, 20,
19, 22]. Particles are organized in super-cells (of size, e.g., 10x10x10), and a
dynamically-sized data structure is used to represent particles from a same super-
cell. For example, attribute tiles [5] have been used to store particles on GPU

6 This quantity, which we call “y part of electric field norm”, is defined as half of
the square root of the electric energy

∫
(E2

x + E2
y) minus the part of that energy

corresponding to the modes in x (here, the first 20 modes).



using doubly linked lists of fixed-capacity arrays. Unlike with our chunks, parti-
cles in an attribute tile are processed in place. If a particle moves to a different
super-cell, it is migrated to a transfer buffer, and its slot is marked as a hole in
an auxiliary bitmap. Subsequently, holes are filled with particles incoming from
neighboring super-cells. Remaining holes, if any, are filled using particles taken
from the end of the attribute tile. In contrast, in our algorithm, particles are
directly moved to their target bin—they get moved exactly once per time step.

While strict binning overcomes several of the aforementioned limitations, it
is nontrivial to implement efficiently. Representing each cell by a single fixed-
capacity array [21, 6] is space inefficient, and falls short outside of specific scenar-
ios where uniform particle density can be assumed. Linked lists [11, Sect. 8.4.]
lead to tremendous overheads both in terms of space (to represent list cells)
and time (to follow indirections). Vectors, a.k.a. resizable arrays, suffer from a
prohibitive 2x space overhead and involve costly resize operations.

Packed Memory Arrays (PMAs) [7] have been proposed as a specialized data
structure for keeping particles sorted by their cell index. This data structure
stores particles in a large array that also contains a fraction of unused cells, called
gaps (a.k.a. holes). The width of the gaps may increase or decrease as particles
move cells. When a gap closes, rebalancing operations involving backward or
forward shifting of the particles must be performed to restore balanced gaps.

Nakashima et al. [17] propose a data structure that we view as a parallelism-
friendly version of PMAs. To tame the frequency of rebalancing operations,
the authors introduce thread-local overflow buffers. However, as the authors
acknowledge [17, III.D.], these buffers come at the cost of increased complexity
in the code, of additional space usage, and of slower processing of the overflow
buffers, on which SIMD operations do not apply.

In Nakashima et al.’s work [17], most data races are eliminated thanks to the
use of a 8-color scheme [13], which we also use. For the remaining data races,
which are associated with fast-moving particles, their algorithm processes them
in a separate sequential loop, which induces a major sequential bottleneck as
soon as the percentage of fast-moving particles exceeds a fraction of a percent.
In contrast, we are able to integrate the processing of these particles within the
main parallel loop, using an atomic operation.

Furthermore, unlike prior work exploiting PMAs, our approach relies on a
general-purpose bag representation, based on chunks. We only customize the
bag implementation to accommodate SoA layout. Our data structure does not
involve any shifting of data nor any overflow buffer. This has two main benefits.
First, we save numerous memory operations. Second, the performance of our
algorithm is robust to an increase in the percentage of fast-moving particles.

6 Future Work

In this work, we focused on multicore and SIMD parallelism. In future work, it
would be great to extend our algorithm with a layer of domain decomposition,
using MPI communications. We speculate that chunks could be used as buffers
for emission and reception of particles reaching the cells at the frontier of a



domain. These chunks could then be merged, at the end of the time step, with the
locally-processed chunks. The flexibility offered by chunks might be helpful for
dealing with dynamically-sized domains. Furthermore, it would be interesting to
adapt our algorithm to target architectures with larger number of cores, such as
GPUs or MICs. We think that the organization in chunks could help addressing
the issue of load balancing, which is critical on these architectures (e.g., [14]).

Data Availability Statement. The datasets and code generated during and/or an-
alyzed during the current study are available in the figshare repository [2].
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